Modes and clustering for time-warped gene expression profile data
نویسندگان
چکیده
منابع مشابه
Modes and clustering for time-warped gene expression profile data
MOTIVATION The study of the dynamics of regulatory processes has led to increased interest for the analysis of temporal gene expression level data. To address the dynamics of regulation, expression data are collected repeatedly over time. It is difficult to statistically represent the resulting high-dimensional data. When regulatory processes determine gene expression, time-warping is likely to...
متن کاملA New Profile Alignment Method for Clustering Gene Expression Data
Abstract. We focus on clustering gene expression temporal profiles, and propose a novel, simple algorithm that is powerful enough to find an efficient distribution of genes over clusters. We also introduce a variant of a clustering index that can effectively decide upon the optimal number of clusters for a given dataset. The clustering method is based on a profilealignment approach, which minim...
متن کاملClustering Gene Expression Time Series Data
Efficiently and effectively finding the genes with similar behaviors from microarray data is an important task in bioinformatics community. Co-expression genes have the same behavior or are controlled by the same regulatory mechanisms. Clustering analysis is a very popular technique to group the co-expressed genes into the same cluster. One of the key issues for clustering gene expression time ...
متن کاملClustering of Time-Course Gene Expression Data
Microarray experiments have been used to measure genes’ expression levels under different cellular conditions or along certain time course. Initial attempts to interpret these data begin with grouping genes according to similarity in their expression profiles. The widely adopted clustering techniques for gene expression data include hierarchical clustering, self-organizing maps, and K-means clu...
متن کاملClustering short time series gene expression data
MOTIVATION Time series expression experiments are used to study a wide range of biological systems. More than 80% of all time series expression datasets are short (8 time points or fewer). These datasets present unique challenges. On account of the large number of genes profiled (often tens of thousands) and the small number of time points many patterns are expected to arise at random. Most clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2003
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btg257